35 research outputs found

    Neurological Complications and MRI

    Get PDF
    Cerebrovascular diseases (cerebral infarction, intracranial haemorrhage and vasculopathy) are common manifestations of sickle cell disease (SCD) associated with significant morbidity and mortality. These neurological complications and potential corresponding neuropsychological compromise may have devastating consequences for a child with SCD. This chapter aims to review the neurological complications in SCD using magnetic resonance imaging (MRI) as both a qualitative and a quantitative tool for detecting abnormality. Advanced MRI pulse sequences, such as high-resolution 3D T1-weighted imaging for brain volumetrics, diffusion tensor imaging for white matter integrity and non-invasive perfusion MRI for cerebral blood flow (CBF) measurement, can provide additional information about the structure and function of brain tissue beyond the scope of conventional clinical imaging. These studies have set to establish quantitative biomarkers that relate to disease severity and neuropsychological sequelae

    Quantitative susceptibility mapping (QSM) and R2* of silent cerebral infarcts in sickle cell anemia

    Get PDF
    Silent cerebral infarction (SCI) is the most commonly reported radiological abnormality in patients with sickle cell anemia (SCA) and is associated with future clinical stroke risk. To date, there have been few histological and quantitative MRI studies of SCI and multiple radiological definitions exist. As a result, the tissue characteristics and composition of SCI remain elusive. The objective of this work was therefore to investigate the composition of segmented SCI lesions using quantitative MRI for R 2 * and quantitative magnetic susceptibility mapping (QSM). 211 SCI lesions were segmented from 32 participants with SCA and 6 controls. SCI were segmented according to two definitions (FLAIR+/-T1w-based threshold) using a semi-automated pipeline. Magnetic susceptibility (χ) and R 2 * maps were calculated from a multi-echo gradient echo sequence and mean SCI values were compared to an equivalent region of interest in normal appearing white matter (NAWM). SCI χ and R 2 * were investigated as a function of SCI definition, patient demographics, anatomical location, and cognition. Compared to NAWM, SCI were significantly less diamagnetic (χ = -0.0067 ppm vs. -0.0153 ppm, p < 0.001) and had significantly lower R 2 * (16.7 s-1 vs. 19.2 s-1, p < 0.001). SCI definition had a significant effect on the mean SCI χ and R 2 * , with lesions becoming significantly less diamagnetic and having significantly lower R 2 * after the application of a more stringent T1w-based threshold. SCI-NAWM R 2 * decrease was significantly greater in patients with SCA compared with controls (-2.84 s-1 vs. -0.64 s-1, p < 0.0001). No significant association was observed between mean SCI-NAWM χ or R2* differences and subject age, lesion anatomical location, or cognition. The increased χ and decreased R 2 * in SCI relative to NAWM observed in both patients and controls is indicative of lower myelin or increased water content within the segmented lesions. The significant SCI-NAWM R 2 * differences observed between SCI in patients with SCA and controls suggests there may be differences in tissue composition relative to NAWM in SCI in the two populations. Quantitative MRI techniques such as QSM and R 2 * mapping can be used to enhance our understanding of the pathophysiology and composition of SCI in patients with SCA as well as controls

    A Comparison of MRI Quantitative Susceptibility Mapping and TRUST-Based Measures of Brain Venous Oxygen Saturation in Sickle Cell Anaemia

    Get PDF
    In recent years, interest has grown in the potential for magnetic resonance imaging (MRI) measures of venous oxygen saturation (Yv) to improve neurological risk prediction. T2-relaxation-under-spin-tagging (TRUST) is an MRI technique which has revealed changes in Yv in patients with sickle cell anemia (SCA). However, prior studies comparing Yv in patients with SCA relative to healthy controls have reported opposing results depending on whether the calibration model, developed to convert blood T2 to Yv, is based on healthy human hemoglobin (HbA), bovine hemoglobin (HbBV) or sickle hemoglobin (HbS). MRI Quantitative Susceptibility Mapping (QSM) is an alternative technique that may hold promise for estimating Yv in SCA as blood magnetic susceptibility is linearly dependent upon Yv, and no significant difference has been found between the magnetic susceptibility of HbA and HbS. Therefore, the aim of this study was to compare estimates of Yv using QSM and TRUST with five published calibration models in healthy controls and patients with SCA. 17 patients with SCA and 13 healthy controls underwent MRI. Susceptibility maps were calculated from a multi-parametric mapping acquisition and Yv was calculated from the mean susceptibility in a region of interest in the superior sagittal sinus. TRUST estimates of T2, within a similar but much smaller region, were converted to Yv using five different calibration models. Correlation and Bland-Altman analyses were performed to compare estimates of Yv between TRUST and QSM methods. For each method, t-tests were also used to explore group-wise differences between patients with SCA and healthy controls. In healthy controls, significant correlations were observed between QSM and TRUST measures of Yv, while in SCA, there were no such correlations. The magnitude and direction of group-wise differences in Yv varied with method. The TRUST-HbBV and QSM methods suggested decreased Yv in SCA relative to healthy controls, while the TRUST-HbS (p < 0.01) and TRUST-HbA models suggested increased Yv in SCA as in previous studies. Further validation of all MRI measures of Yv, relative to ground truth measures such as O15 PET and jugular vein catheterization, is required in SCA before QSM or TRUST methods can be considered for neurological risk prediction

    Brain volume in Tanzanian children with sickle cell anaemia: A neuroimaging study

    Get PDF
    Brain injury is a common complication of sickle cell anaemia (SCA). White matter (WM) and cortical and subcortical grey matter (GM), structures may have reduced volume in patients with SCA. This study focuses on whether silent cerebral infarction (SCI), vasculopathy or anaemia affects WM and regional GM volumes in children living in Africa. Children with SCA (n = 144; aged 5-20 years; 74 male) and sibling controls (n = 53; aged 5-17 years; 29 male) underwent magnetic resonance imaging. Effects of SCI (n = 37), vasculopathy (n = 15), and haemoglobin were assessed. Compared with controls, after adjusting for age, sex and intracranial volume, patients with SCA had smaller volumes for WM and cortical, subcortical and total GM, as well as bilateral cerebellar cortex, globus pallidus, amygdala and right thalamus. Left globus pallidus volume was further reduced in patients with vasculopathy. Putamen and hippocampus volumes were larger in patients with SCA without SCI or vasculopathy than in controls. Significant positive effects of haemoglobin on regional GM volumes were confined to the controls. Patients with SCA generally have reduced GM volumes compared with controls, although some subcortical regions may be spared. SCI and vasculopathy may affect the trajectory of change in subcortical GM and WM volume. Brain volume in non-SCA children may be vulnerable to contemporaneous anaemia

    Quantification of Silent Cerebral Infarction on High-Resolution FLAIR and Cognition in Sickle Cell Anemia

    Get PDF
    Research in sickle cell anemia (SCA) has used, with limited race-matched control data, binary categorization of patients according to the presence or absence of silent cerebral infarction (SCI). SCI have primarily been identified using low-resolution MRI, with radiological definitions varying in lesion length and the requirement for abnormality on both fluid attenuated inversion recovery (FLAIR) and T1-weighted images. We aimed to assess the effect of published SCI definitions on global, regional, and lobar lesion metrics and their value in predicting cognition. One hundred and six patients with SCA and 48 controls aged 8-30 years underwent 3T MRI with a high-resolution FLAIR sequence and Wechsler cognitive assessment. Prevalence, number, and volume of lesions were calculated using a semi-automated pipeline for SCI defined as: (1) Liberal: any length (L-SCI); (2) Traditional: >3 mm in greatest dimension (T-SCI); (3) Restrictive; >3 mm in greatest dimension with a corresponding T1-weighted hypo-intensity (R-SCI). Globally, as hypothesized, there were large effects of SCI definition on lesion metrics in patients and controls, with prevalence varying from 24-42% in patients, and 4-23% in controls. However, contrary to hypotheses, there was no effect of any global metric on cognition. Regionally, there was a consistent distribution of SCI in frontal and parietal deep and juxta-cortical regions across definitions and metrics in patients, but no consistent distribution in controls. Effects of regional SCI metrics on cognitive performance were of small magnitude; some were paradoxical. These findings expose the challenges associated with the widespread use of SCI presence as a biomarker of white-matter injury and cognitive dysfunction in cross-sectional high-resolution MRI studies in patients with SCA. The findings indicate that with high-resolution MRI: (1) radiological definitions have a large effect on resulting lesion groups, numbers, and volumes; (2) there is a non-negligible prevalence of lesions in young healthy controls; and (3) at the group-level, there is no cross-sectional association between global lesion metrics and general cognitive impairment irrespective of lesion definition and metric. With high-resolution multi-modal MRI, the dichotomy of presence or absence of SCI does not appear to be a sensitive biomarker for the detection of functionally significant pathology; the search for appropriate endpoints for clinical treatment trials should continue

    Intelligence quotient in paediatric sickle cell disease: a systematic review and meta-analysis.

    No full text
    Children with SCD and no apparent MRI abnormality have significantly lower IQ than healthy controls. In this chronic condition, other biological, socioeconomic, and environmental factors must play a significant role in cognition
    corecore